Demystifying Deep Learning:
An Introduction to convolutional neural networks
and computer vision

Justin Ellis

RTA Meetup
February 20, 2018

Talk Overview

- Overview of Deep learning
+ Convolutional Neural Networks (CNN)
-+ Applications of computer vision

+ Transfer learning

Myths

- Neural networks are a black box.

- You needs tons of data and a cluster of GPUs to use
deep learning

* You need years of training and tons of math to use and
understand deep learning.

A familiar algorithm

- Logistic regression

. Prediction ¢ = Sigmoid(Wz + b)

- Activation function Sigmoid(z) = 7 +1
6—2

- Cost function J(W,b) = ylog(9) + (1 — y) log(1 — 7)

X1 — ‘
X9 ‘ K) > 5\,

X3

- Can be represented with

Deep Neural Networks

put layer

||||||

222222
444444444444444444444444444

Deep Neural Networks Simple Keras Code

With modern DL frameworks, most neural nets can be
coded in <~ 100 lines

create model
model = Sequential()
layer sizes = [64, 128, 512, 512, 128, 64]
model.add(Dense(layer sizes[0], input dim=64, activation='relu'))
for 1s in layer sizes[1l:]:
model.add(Dense(ls, activation='relu'))
model.add(Dense(1l, activation='sigmoid'))

Compile model
model.compile(loss='binary crossentropy', optimizer='adam', metrics=['accuracy'])

Fit the model
model.fit (X, Y)

Will work on CPU or GPU with no change to code!

How could we use this for computer vision?

- Say image is 224 x 224 x 3 (RGB).
- Unroll to feature vector of size 150528

- For just the first hidden layer with 100 nodes we have
over 15 million parameters. Not good

input layer
hidden layer 1 hidden layer 2

lmages

- What do you see?
- Blob in middle?

- Black, white, red?
- Animal?

- Dog?

- Poodle?

- Happy?

Convolutions

Convolved
Image

Filter

Operation

—
o o O
o - O
o o O
[——
Z
t
Q
3
+
—
L |
x
i
oo
—
o
x
o
S—
&
—
o
x
Lo
-

(-2x2)+(0x6)+(2x2)+

(-1x2)+(0x4)+(1x1) =-3

Edge detection

Sharpen

A

Box blur

(normalized)

o
X
o
c
(o]
p -
T
| -
-
v
()
o

—

Q

e

=

, =

2=

50

)

Z 9

S 3

C(

Gaussian blur

(approximation)

Basic Convolutional Neural Network (CNN)
Architecture

Input Convolution + RelLU Pooling Convolution + RelLU Pooling Fully Connected
Source: https://shafeentejani.github.io/2016-12-20/convolutional-neural-nets/

- Uses filters to learn features of images (i.e. edges, colors, shapes, etc)

- Standard architecture has many layers of the form CONV->POOL
followed by some fully connected layers at the end where the last layer
depends on the task (sigmoid, softmax, etc)

- Different architectures use different filter sizes, different padding,
different depths, etc

CNN Architecture
70O

/“WENEED TOG0

»
.

Going deeper with convolutions

Christian Szegedy Wei Liu Yangqing Jia
Google Inc. University of North Carolina, Chapel Hill Google Inc.
Pierre Sermanet Scott Reed Dragomir Anguelov Dumitru Erhan
Google Inc. University of Michigan Google Inc. Google Inc.
Vincent Vanhoucke Andrew Rabinovich
Google Inc. Google Inc.

£C 1000

O
3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512, /2

T relu

F(x) + x

F(x) Ire'“ ide)ritity

X
Residual block

o
Q
onv..o

Softmax

FC 1000

Softmax

FC 4096

FC 1000

FC 4096

FC 4096

FC 4096

Pool
| Pool |
| Pool |
| Pool |
| Pool |

Pool
I Pool I
| Pool |
| Pool |
| Pool |

Input

Input

VGG16

VGG19

What does a CNN “see”?

A \‘4\.7’/@,”‘? ﬁ,—ﬁ—
S/l

I' W '”Hll[

-

Zeiler & Fergus 2013, Visualizing and understanding convolutional networks

Computer Vision Tasks

“the automatic extraction, analysis and understanding of useful information from a single image or a sequence of images.”
- British Machine Vision Association

Classification Instance
+ Localization

Classification Object Detection

= N

Segmentation

CAT, DOG, DUCK CAT, DOG, DUCK

A

v
Single object Multiple objects

Source: Fei-Fei Li, Andrej Karpathy & Justin Johnson (2016) cs231n, Lecture 8 - Slide 8, Spatial
Localization and Detection (01/02/2016). Available:
http://cs231n.stanford.edu/slides/2016/winter1516_lecture8.pdf

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Detection

Mean Average Precision(mAP)

2013 2014 2015 2016 2017

Note: precision = True Positives / Predicted Positives

Classitication Error

Localization Error

0.3

0.25

0.2

0.15

0.1

0.05

0.5

0.4

0.3

0.2

0.1

2010

2011

2011

2012

2012

2013

2013

2014

Classification

16.7% ' 23.3% |
\ vy v

2014 2015 2016 2017

Localization

14.4% 19.5% |,
v oy v

0.077 0.062

2015 2016 2017

Source: http://image-net.org/challenges/talks_2017/ILSVRC2017_overview.pdf

Facial Recognition

Pooling Fully Connected

Pooling Convolution + RelU

Convolution + RelLU

Facial Recognition

0% FRRRRRte | i | B O
= PR X R a2 ev=ase IS
. O 2 | BOes :

Input Convolution + RelU Pooling Convolution + RelU Pooling Fully Connected

Neural Style Transfer

Image generated by minimizing the difference between
“style” and “content” image.

Real Time Object Detection

https://www.youtube.com/watch?v=VOC3hugHrss

https://www.youtube.com/watch?v=VOC3huqHrss

(some) Computer Vision applications

; T Output
X-ray/MRI classification N e

Input
Chest X-Ray Image

Product discovery

Insurance claims

Quality control

S0 how does one “do” deep learning

Make your dreams

1+
come truell -

Transfer learning

- Use "knowledge” from pre-trained network and “fine-
tune” to new task

Traditional ML Transfer learning

/‘\ Task / domain A m Source task / /\
| Task / domain B | domain Target task /
U \ / J - v)

Storing knowledge gained solving
task or domain. one problem and applying it toa

Training and
evaluation on the same

different but related problem.

Model A Model B

AN

Knowledge

Transfer Learning Techniques for CV

First train data on large available data set (i.e. imagnet) or better yet, download the
pre-trained weights for a specific CNN architecture

| ots of
input data CONV CONV CONV CONV FCEC OUTPUT
o
o
L ess Freeze to pre-trained values Train
nputdata CoONv CONV CONV CONV FCFC OUTPUT

Transfer Learning Techniques for CV

First train data on large available data set (i.e. imagnet) or better yet, download the
pre-trained weights for a specific CNN architecture

L ots of
input data CONV CONV CONV CONV FCEC OUTPUT
°
L ess Freeze to pre-trained values Train

input data CONV CONV CONV CONV FCIFC OUTPUT

Transfer Learning Techniques for CV

First train data on large available data set (i.e. imagnet) or better yet, download the
pre-trained weights for a specific CNN architecture

| ots of
input data CONV CONV CONV CONV FCFC OUTPUT
o
°

L ess Freeze to pre-trained values Train

input data CONV CONV CONV CONV |[FCEC OUTPUT
o
T ®

Transfer Learning Techniques for CV

First train data on large available data set (i.e. imagnet) or better yet, download the
pre-trained weights for a specific CNN architecture

| ots of
input data CONV CONV CONV CONV FCEC OUTPUT
o
o
L ess Freeze to pre-trained values Train
nputdata | CONV CONV CONV CONV FCFC OUTPUT

Transfer Learning Techniques for CV

First train data on large available data set (i.e. imagnet) or better yet, download the
pre-trained weights for a specific CNN architecture

| ots of
input data CONV CONV CONV CONV FCFC OUTPUT
o
°

Less Small LR Medium LR Large LR

input data CONV CONV CONV CONV |[FCEC OUTPUT
o
T ®

Simple application on Cats v. Dogs Kaggle
Competition

Pre-trained ResNet 50 models with last softmax dense layer removed
base model = ResNet50(weights='imagenet', include top=False)

add Dense layer and sigmoid output layer
base model.output
GlobalAveragePooling2D() (x)

Dense (1024, activation='relu') (x)
predictions = Dense(l, activation='sigmoid') (x)

EIE T N
I

freeze convolution weights and compile model with cross-entropy loss for cat/dog
model = Model(inputs=base model.input, outputs=predictions)

for layer in base model.layers: layer.trainable = False

optim = adam(lr=le-4, decay=le-6)

model.compile(optimizer=optim, loss='binary crossentropy', metrics=['accuracy'])

Run pre-trained model for a few epochs

history = LossHistory()

model.fit generator(train generator, train generator.n // batch size, epochs=3, workers=4,
validation_data=validation generator,
validation_steps=validation generator.n // batch_size)

re-train last convolutional layer

split_at = 157

for layer in model.layers|[:split _at]: layer.trainable = False

for layer in model.layers[split at:]: layer.trainable = True
model.compile(optimizer=optim, loss='binary crossentropy', metrics=['accuracy'])

fit for one epoch

modelLfit_generator(train_generator, train generator.n // batch size, epochs=1, workers=3,
validation_data=validation_generator,
validation steps=validation generator.n // batch size)

Epoch 1/1
359/359 [==============================] - 223s 620ms/step - loss: 0.0617 - acc: 0.9781 - val loss: 0.0416 - val acc:
0.9864

You can do deep learning too!

- fast.al courses and forums
deeplearning.ai courses on Coursera

Stanford CS courses on youtube

—xtra slides

Natural Language Processing (NLP)

- Automatic manipulation and understanding of natural language (i.e. speech, text)
by software

- Text classification (i.e. sentiment analysis, spam filtering)

- Language modeling: learns probabillistic relationship between words and
sequences of words (i.e. model understands language)

- Speech recognition: combination of language modeling and audio data
- Caption generation: use language model to generate caption from image

- Machine translation: use language model to translate from one language to
another

- Document summary: use language model to output summary conditioned on
entire document

Word embeddings

+ Represent words a n-dimensional vector

cat =[1,6,4,8,9,...,2]
dog = [5,2,7,4,5,...,8]
the =[1,2,3,6,3,...,1]

- Can be visualized by projecting into 2-d space where
similar words have similar word vectors

- Usually pre-computed
for transter learning
tasks

o o o = = o o
w Pg 0 - ~ = © S
T

Bdden

; part
piel>® O grdup o
minister president
money a E;‘astd be
Bhid g, pumber p,govemmen t fau ﬁéal%vg 1
diay ’ ¢ O Start g)sarz
» situat re communication
eaﬁ f ap an%% ; ¥
: s Q@fy Shuat . problem plan hme"ne
information o law _ practice7¢hfissue O
rormaty Lrtronsiirs t e o4\ [Project reason i
, countr INdsalinhker interes!
o war Bind é place@# Oghc;g’g;ea aher kennung e Fhreresse
- !'!fe o E;l?gx?eryple gelmteich fishtung @(ijmprortance Qra,rticle
o Qb @eﬂsogﬁger e O Changa’gﬁgf}gggmem eutung kel
r pubgRution i S
i : environment ftur
B GabsR el Pender £ onery
Qe\;}lorld food 0 prod%ﬁlﬁgy ergie

@]%‘ aUC’ ;e‘

K
. i%éhrung

gecompetition
TThewerb.s

Source: https://medium.com/deeper-learning/glossary-of-deep-learning-word-embedding-f90c3cec34ca

Recurrent Neural Networks (RNN) for NLP

T

S0 O A
I S

- RNNs are used for sequences of data where there is a temporal order

(h)
W

- Each component in the loop is similar to a standard NN but the activations from that
layer (along with the next element in the sequence) are then passed to the next block

- The architecture of the block (GRU, LSTM, etc) can help retain state over long
sequences

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Transfer Learning for NLP (1)

- Unlike GV, transfer learning in NLP is relatively new
- New FitLaM method seems promising
- Leverage large amounts of available data (imagnet)

- Utllize task, which can be optimized independently (multi-class
image classification)

- Rely on a single model that can be used as-is for most NLP
tasks (CNNSs)

-+ Easy to use in practice (pre-trained networks in Keras/Pytorch)

Howard and Ruder 2018, Fine Tuned Language Models for Text Classification

Transfer Learning for NLP (2)

- Step 1: General domain LM training (uses wikitext-103)
-+ Use standard LSTM with highly tuned regularization techniques
- Weights and code will be made available

- Step 2: Target task LM fine tuning
- Use gradual unfreezing as in CV

- Use cosine annealing over epoch and warm-up reverse annealing before
unfreezing

- Step 3: Target talk classifier fine-tuning

- Use discriminative fine tuning with different learning rates at different layers

Howard and Ruder 2018, Fine Tuned Language Models for Text Classification

Transfer Learning for NLP (3)

Model Test Model Test
BCN+Char+CoVe (McCann et al., 2017) 91.8 BCN+Char+CoVe (McCann et al., 2017) 95.8
5 oh-LSTM (Johnson and Zhang, 2016) 94.1 & TBCNN (Mou et al., 2015) 96.0
E Virtual (Miyato et al., 2016) 94.1 ﬁ LSTM-CNN (Zhou et al., 2016) 96.1
FitLaM (Ours) 95.4 T FitLaM (ours) 96.4

Table 2: Test accuracy scores on two text classification datasets used by McCann et al. (2017).

AG-News DBpedia Yelp-bi

Char-level CNN (Zhang et al., 2015) 9.51 1.55 4.88
CNN (Johnson and Zhang, 2016) 6.57 0.84 2.90
DPCNN (Johnson and Zhang, 2017) 6.87 0.88 2.64
FitLaM (ours) 5.01 0.80 2.16

Table 3: Test error rates (%) on three text classification datasets used by Johnson and Zhang (2017).

- Still a work in progress that requires a decent amount of hand-tuning
and tricks

- If task-specific data has words not in general model vocabulary, what
do you do”? (Howard suggests setting to mean of other embeddings...)

Howard and Ruder 2018, Fine Tuned Language Models for Text Classification

