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Talk Overview

• Overview of Deep learning 

• Convolutional Neural Networks (CNN) 

• Applications of computer vision 

• Transfer learning



Myths

• Neural networks are a black box. 

• You needs tons of data and a cluster of GPUs to use 
deep learning 

• You need years of training and tons of math to use and 
understand deep learning.



A familiar algorithm

• Logistic regression 

• Prediction 

• Activation function 

• Cost function 

• Can be represented with

ŷ = Sigmoid(Wx+ b)

Sigmoid(z) =
1

1 + e�z

J(W, b) = y log(ŷ) + (1� y) log(1� ŷ)



Deep Neural Networks

x = a

[0] a[`] = g[`](W [`]a[`�1] + b[`])

g(z) =



Deep Neural Networks Simple Keras Code

• With modern DL frameworks, most neural nets can be 
coded in <~ 100 lines 

• Will work on CPU or GPU with no change to code!



How could we use this for computer vision?

• Say image is 224 x 224 x 3 (RGB). 

• Unroll to feature vector of size 150528 

• For just the first hidden layer with 100 nodes we have 
over 15 million parameters. Not good



Images

• What do you see?


• Blob in middle?


• Black, white, red?


• Animal?


• Dog?


• Poodle?


• Happy?



Convolutions



Basic Convolutional Neural Network (CNN) 
Architecture

• Uses filters to learn features of images (i.e. edges, colors, shapes, etc) 

• Standard architecture has many layers of the form CONV->POOL 
followed by some fully connected layers at the end where the last layer 
depends on the task (sigmoid, softmax, etc) 

• Different architectures use different filter sizes, different padding, 
different depths, etc

Source: https://shafeentejani.github.io/2016-12-20/convolutional-neural-nets/



CNN Architecture 
zoo

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017

Case Study: VGGNet
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Small filters, Deeper networks
 
8 layers (AlexNet) 
-> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1
and  2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC’13 
(ZFNet)
-> 7.3% top 5 error in ILSVRC’14 AlexNet VGG16 VGG19
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relu

Residual block
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identity

F(x) + x

F(x)

relu

X

Full ResNet architecture:
- Stack residual blocks
- Every residual block has 

two 3x3 conv layers
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What does a CNN “see”?
824 M.D. Zeiler and R. Fergus
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Fig. 2. Visualization of features in a fully trained model. For layers 2-5 we show the top
9 activations in a random subset of feature maps across the validation data, projected
down to pixel space using our deconvolutional network approach. Our reconstructions
are not samples from the model: they are reconstructed patterns from the validation set
that cause high activations in a given feature map. For each feature map we also show
the corresponding image patches. Note: (i) the the strong grouping within each feature
map, (ii) greater invariance at higher layers and (iii) exaggeration of discriminative
parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in
electronic form. The compression artifacts are a consequence of the 30Mb submission
limit, not the reconstruction algorithm itself.
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Zeiler & Fergus 2013, Visualizing and understanding convolutional networks 



Computer Vision Tasks
“the automatic extraction, analysis and understanding of useful information from a single image or a sequence of images.”

- British Machine Vision Association

A Year in Computer Vision: The M Tank, 2017 

Part One: Classification/Localisation, Object Detection, Object 
Tracking 

Classification/Localisation 
The task of classification, when it relates to images, generally​ ​refers to assigning a label 
to the whole image, e.g. ‘cat’. Assuming this, Localisation may then refer to finding 
where the object is in said image, usually denoted by the output of some form of 
bounding box around the object. Current classification/localisation techniques on 
ImageNet  have likely surpassed an ensemble of trained humans.  For this reason, we 9 10

place greater emphasis on subsequent sections of the blog.  
 

Figure 1: ​Computer Vision Tasks 

 
Source ​: Fei-Fei Li, Andrej Karpathy & Justin Johnson (2016) cs231n, Lecture 8 - Slide 8, ​Spatial 
Localization and Detection ​ (01/02/2016). Available: 
http://cs231n.stanford.edu/slides/2016/winter1516_lecture8.pdf  
 
However, the introduction of larger datasets with an increased number of classes  will 11

likely provide new metrics for progress in the near future. On that point, François 
Chollet, the creator of Keras,  has applied new techniques, including the popular 12

architecture Xception, to an internal google dataset with over 350 million multi-label 
images containing 17,000 classes. ,   13 14

9 ImageNet refers to a popular image dataset for Computer Vision. Each year entrants compete in a 
series of different tasks called the ImageNet Large Scale Visual Recognition Challenge (ILSVRC). 
Available: ​http://image-net.org/challenges/LSVRC/2016/index  
10 See “​What I learned from competing against a ConvNet on ImageNet​” by Andrej Karpathy. The blog 
post details the author’s journey to provide a human benchmark against the ILSVRC 2014 dataset. The 
error rate was approximately 5.1% versus a then state-of-the-art GoogLeNet classification error of 6.8%. 
Available: 
http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/  
11 See new datasets later in this piece.  
12 Keras is a popular neural network-based deep learning library: ​https://keras.io/  
13 Chollet, F. 2016. ​Information-theoretical label embeddings for large-scale image classification. ​[Online] 
arXiv: 1607.05691 ​. Available: ​arXiv:1607.05691v1 
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Facial Recognition



Facial Recognition



Neural Style Transfer

• Image generated by minimizing the difference between 
“style” and “content” image.



Real Time Object Detection

https://www.youtube.com/watch?v=VOC3huqHrss

https://www.youtube.com/watch?v=VOC3huqHrss


(some) Computer Vision applications

• X-ray/MRI classification 

• Product discovery 

• Insurance claims 

• Quality control   

CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays

with Deep Learning

Pranav Rajpurkar * 1 Jeremy Irvin * 1 Kaylie Zhu 1 Brandon Yang 1 Hershel Mehta 1

Tony Duan 1 Daisy Ding 1 Aarti Bagul 1 Robyn L. Ball 2 Curtis Langlotz 3 Katie Shpanskaya 3

Matthew P. Lungren 3 Andrew Y. Ng 1

Abstract

We develop an algorithm that can detect
pneumonia from chest X-rays at a level ex-
ceeding practicing radiologists. Our algo-
rithm, CheXNet, is a 121-layer convolutional
neural network trained on ChestX-ray14, cur-
rently the largest publicly available chest X-
ray dataset, containing over 100,000 frontal-
view X-ray images with 14 diseases. Four
practicing academic radiologists annotate a
test set, on which we compare the perfor-
mance of CheXNet to that of radiologists.
We find that CheXNet exceeds average ra-
diologist performance on the F1 metric. We
extend CheXNet to detect all 14 diseases in
ChestX-ray14 and achieve state of the art re-
sults on all 14 diseases.

1. Introduction

More than 1 million adults are hospitalized with pneu-
monia and around 50,000 die from the disease every
year in the US alone (CDC, 2017). Chest X-rays
are currently the best available method for diagnosing
pneumonia (WHO, 2001), playing a crucial role in clin-
ical care (Franquet, 2001) and epidemiological studies
(Cherian et al., 2005). However, detecting pneumo-
nia in chest X-rays is a challenging task that relies on
the availability of expert radiologists. In this work, we
present a model that can automatically detect pneu-
monia from chest X-rays at a level exceeding practicing
radiologists.

*Equal contribution 1Stanford University Depart-
ment of Computer Science 2Stanford University De-
partment of Medicine 3Stanford University Depart-
ment of Radiology. Correspondence to: Pranav
Rajpurkar <pranavsr@cs.stanford.edu>, Jeremy Irvin
<jirvin16@cs.stanford.edu>.

Project website at https://stanfordmlgroup.

github.io/projects/chexnet
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Chest X-Ray Image

CheXNet
121-layer CNN

Figure 1. CheXNet is a 121-layer convolutional neural net-
work that takes a chest X-ray image as input, and outputs
the probability of a pathology. On this example, CheXnet
correctly detects pneumonia and also localizes areas in the
image most indicative of the pathology.

Our model, ChexNet (shown in Figure 1), is a 121-
layer convolutional neural network that inputs a chest
X-ray image and outputs the probability of pneumonia
along with a heatmap localizing the areas of the im-
age most indicative of pneumonia. We train CheXNet
on the recently released ChestX-ray14 dataset (Wang
et al., 2017), which contains 112,120 frontal-view chest
X-ray images individually labeled with up to 14 di↵er-
ent thoracic diseases, including pneumonia. We use
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So how does one “do” deep learning 

Make your dreams  
come true!! Just do it!



Transfer learning

• Use “knowledge” from pre-trained network and “fine-
tune” to new task



Transfer Learning Techniques for CV

• First train data on large available data set (i.e. imagnet) or better yet, download the 
pre-trained weights for a specific CNN architecture
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Transfer Learning Techniques for CV

• First train data on large available data set (i.e. imagnet) or better yet, download the 
pre-trained weights for a specific CNN architecture

… …

CONV CONVCONVCONV FC FC OUTPUT
Lots of 

input data

…

CONV CONVCONVCONV FC FC OUTPUT
Less  

input data
Small LR Medium LR Large LR



Simple application on Cats v. Dogs Kaggle 
Competition



You can do deep learning too!

• fast.ai courses and forums 

• deeplearning.ai courses on Coursera 

• Stanford CS courses on youtube



Extra slides



Natural Language Processing (NLP)

• Automatic manipulation and understanding of natural language (i.e. speech, text) 
by software 

• Text classification (i.e. sentiment analysis, spam filtering) 

• Language modeling: learns probabilistic relationship between words and 
sequences of words (i.e. model understands language) 

• Speech recognition: combination of language modeling and audio data 

• Caption generation: use language model to generate caption from image 

• Machine translation: use language model to translate from one language to 
another 

• Document summary: use language model to output summary conditioned on 
entire document



Word embeddings

• Represent words a n-dimensional vector 

• Can be visualized by projecting into 2-d space where 
similar words have similar word vectors 

• Usually pre-computed  
for transfer learning  
tasks

cat = [1,6,4,8,9,…,2] 
dog = [5,2,7,4,5,…,8] 
the = [1,2,3,6,3,…,1]

Source: https://medium.com/deeper-learning/glossary-of-deep-learning-word-embedding-f90c3cec34ca



Recurrent Neural Networks (RNN) for NLP

• RNNs are used for sequences of data where there is a temporal order 

• Each component in the loop is similar to a standard NN but the activations from that 
layer (along with the next element in the sequence) are then passed to the next block 

• The architecture of the block (GRU, LSTM, etc) can help retain state over long 
sequences 

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Transfer Learning for NLP (1)

• Unlike CV, transfer learning in NLP is relatively new 

• New FitLaM method seems promising 

• Leverage large amounts of available data (imagnet) 

• Utilize task, which can be optimized independently (multi-class 
image classification) 

• Rely on a single model that can be used as-is for most NLP 
tasks (CNNs) 

• Easy to use in practice (pre-trained networks in Keras/Pytorch)

Howard and Ruder 2018, Fine Tuned Language Models for Text Classification



Transfer Learning for NLP (2)

• Step 1: General domain LM training (uses wikitext-103) 

• Use standard LSTM with highly tuned regularization techniques 

• Weights and code will be made available 

• Step 2: Target task LM fine tuning 

• Use gradual unfreezing as in CV 

• Use cosine annealing over epoch and warm-up reverse annealing before 
unfreezing 

• Step 3: Target talk classifier fine-tuning 

• Use discriminative fine tuning with different learning rates at different layers

Howard and Ruder 2018, Fine Tuned Language Models for Text Classification



Transfer Learning for NLP (3)

• Still a work in progress that requires a decent amount of hand-tuning 
and tricks 

• If task-specific data has words not in general model vocabulary, what 
do you do? (Howard suggests setting to mean of other embeddings…)

Model Test Model Test
IM

D
b

BCN+Char+CoVe (McCann et al., 2017) 91.8

T
R

E
C

-6

BCN+Char+CoVe (McCann et al., 2017) 95.8

oh-LSTM (Johnson and Zhang, 2016) 94.1 TBCNN (Mou et al., 2015) 96.0

Virtual (Miyato et al., 2016) 94.1 LSTM-CNN (Zhou et al., 2016) 96.1

FitLaM (Ours) 95.4 FitLaM (ours) 96.4

Table 2: Test accuracy scores on two text classification datasets used by McCann et al. (2017).

AG-News DBpedia Yelp-bi

Char-level CNN (Zhang et al., 2015) 9.51 1.55 4.88

CNN (Johnson and Zhang, 2016) 6.57 0.84 2.90

DPCNN (Johnson and Zhang, 2017) 6.87 0.88 2.64

FitLaM (ours) 5.01 0.80 2.16

Table 3: Test error rates (%) on three text classification datasets used by Johnson and Zhang (2017).

of-the-art transfer learning method for NLP.5 For

the AG-News, Yelp, and DBpedia datasets com-

piled by Zhang et al. (2015), we compare against

the state-of-the-art text categorization method by

Johnson and Zhang (2017).

5.2 Results

We show the test accuracy scores on the IMDb and

TREC-6 datasets used by McCann et al. (2017)

in Table 2. Our method outperforms both CoVe,

a state-of-the-art transfer learning method based

on hypercolumns, as well as the state-of-the-

art on both datasets. On IMDb, we reduce

the error dramatically by 43.9% and 22% with

regard to CoVe and the state-of-the-art respec-

tively. This is promising in particular as the exist-

ing state-of-the-art requires complex architectures

(Anonymous, 2018), multiple forms of attention

(McCann et al., 2017) and sophisticated embed-

ding schemes (Johnson and Zhang, 2016), while

our method employs a standard Bi-LSTM with

dropout.

On TREC-6, our improvement—similar as the

improvements of state-of-the-art approaches—is

not statistically significant, owing to the small size

of the test consisting only of 500 examples. We

recommend to cease using this dataset for the eval-

uation of text classification algorithms. However,

the competitive performance on the small TREC-

6 dataset still demonstrates that fine-tuning a lan-

guage model and a target task classifier is feasi-

5The transfer learning methods of Peters et al. (2017),
Anonymous (2018), and Liu et al. (2018) were only applied
to sequence tasks and it is not clear how to best use their
methods for classification.

ble even for small datasets. Note that despite pre-

training on more than two orders of magnitude

less data than the 7 million sentence pairs used by

McCann et al. (2017), we consistently outperform

their approach on both datasets.

We show the test error rates on the larger

AG-News, DBpedia, and Yelp-bi datasets used

by Johnson and Zhang (2017) in Table 3. Our

method again outperforms the state-of-the-art sig-

nificantly. On AG-News, we observe a similarly

dramatic error reduction by 23.7% compared to

the state-of-the-art. On DBpedia and Yelp-bi, we

reduce the error by 4.8% and 18.2% respectively.

6 Future directions

While our method still requires some tricks and

manual tuning of learning rates and dropout

weights to achieve the best performance, we see

it analogous to AlexNet (Krizhevsky et al., 2012)

as a necessary first step that will lead to a wave of

innovation. We are confident that fine-tuning lan-

guage models will become more robust as more

research focuses on improving transfer learning

for NLP. One important step on this path will be

careful ablation studies to understand the impact

of each component of the models and training pro-

cedures described here.

Given that transfer learning (and particularly

fine-tuning) for NLP has been under-explored,

many future directions are possible. One possible

direction is to improve the language model pre-

training task and make it more scalable: for Im-

ageNet, predicting far fewer classes only incurs

a small performance drop (Huh et al., 2016)—

Howard and Ruder 2018, Fine Tuned Language Models for Text Classification


