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SOME BACKGROUND ON ME

» Postdoctoral fellow at |PL/Caltech

» Research focus on Gravitational Wave detection. Mostly

work on Bayesian time series analysis multidimensiona
sampling methods

* Aspiring data scientist who Is very interested In machine
learning, analytics, visualization etc.

BElE@re (o [earn more through these meet ups!
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SOME CAVEATS

- What this presentation Is not:

» A full detailed analysis of police shooting data that can give probability of being
shot given x (x Is some feature)

* an indictment on any group of people based on race, socio-economic status, or
ethnicrty

 What this talk is:

* An exploration of open data sets that seeks to look for correlations among
police shootings and crime, populations, and poverty

* An Invitation for more ideas and interest and a call for better open data



THE DATA AND TOOLS

» Police Shooting Data:

» Washington Post police shooting database (2015, 2016)

+ Mapping Police Violence Database (2013, 2014)

« Crime Data:

 FBI Uniform Crime Reporting Statistics

* Population and Income data

« US Census County Characteristics Dataset

« US Census Income Dataset

« Tools; Python language, Pandas for data frames, GeoPandas, shapely, and pysal for geographic data,

Seaborn and Matplotlib for visualizations, Scikit-Learn for ML, nltk for text analysis


https://www.washingtonpost.com/graphics/national/police-shootings-2016/
http://mappingpoliceviolence.org
http://www.icpsr.umich.edu/icpsrweb/NACJD/series/57/studies/36394?archive=NACJD&sortBy=7
https://www.census.gov/popest/data/counties/asrh/2015/CC-EST2015-ALLDATA.html
http://factfinder.census.gov/faces/nav/jsf/pages/searchresults.xhtml?refresh=t#none
https://www.python.org
http://pandas.pydata.org
http://geopandas.org
http://toblerity.org/shapely/manual.html
http://pysal.readthedocs.io/en/v1.11.0/#
https://stanford.edu/~mwaskom/software/seaborn/
http://matplotlib.org
http://scikit-learn.org/stable/
http://www.nltk.org

BACKGROUND

Obviously, police brutality and police killings are a very hot topic recently,
would like to try to gain some insights from data (preferably open data)

A Multi-Level Bayesian Analysis of Racial Bias
in Police Shootings at the County-Level in
the United States, 2011-2014

Cody T. Ross*

NBER WORKING PAPER SERIES

AN EMPIRICAL ANALYSIS OF RACIAL DIFFERENCES IN POLICE USE OF
FORCE

Roland G. Fryer, J: L I . . — . B
onan RA Department of Anthropology, University of California, Davis, Davis, California, United States of America

Working Paper 22399
http://www nber.org/papers/w22399 AbStI’GCt
A geographically-resolved, multi-level Bayesian model is used to analyze the data pre-
NATIONAL BUREAU OF ECONOMIC RESEARCH . . . . . .
1050 Massachusetts Avenue sented in the U.S. Police-Shooting Database (USPSD) in order to investigate the extent of
Cambridge, MA 02138 racial bias in the shooting of American civilians by police officers in recent years. In contrast
July 2016 to previous work that relied on the FBI’s Supplemental Homicide Reports that were con-
structed from self-reported cases of police-involved homicide, this data set is less likely to
ABSTRACT be biased by police reporting practices. County-specific relative risk outcomes of being shot
This paper explores racial differences in police use of force. On non-lethal uses of force, blacks by police are estimated as a function of the interaction of: 1) whether suspects/civilians
and Hispanics are more than fifty percent more likely to experience some form of force in were armed or unarmed, and 2) the race/ethnicity of the suspects/civilians. The results pro-
interactions with police. Adding controls that account for important context and civilian behavior vide evidence of a significant bias in the killing of unarmed black Americans relative to
reduces, but cannot fully explain, these disparities. On the most extreme use of force — officer- - : - = i
involved shootings — we find no racial differences in either the raw data or when contextual unarmed white Americans, in that the probability of being {black, unarmed, and shot by
factors are taken into account. We argue that the patterns in the data are consistent with a model police} is about 3.49 times the probability of being {white, unarmed, and shot by police} on

in which police officers are utility maximizers, a fraction of which have a preference for

discrimination, who incur relatively high expected costs of officer-involved shootings. average. Furthermore, the results of multi-level modeling show that there exists significant

heterogeneity across counties in the extent of racial bias in police shootings, with some
counties showing relative risk ratios of 20 to 1 or more. Finally, analysis of police shooting

U Se S | N d |V| d u a| |Ze d d a‘ta (m O S‘t|>/ ﬂf‘o m data as a function of county-level predictors suggests that racial bias in police shootings is

most likely to emerge in police departments in larger metropolitan counties with low median

|—| @ S‘to n) an d | O g| S‘U C re g ress | on incomes and a sizable portion of black residents, especially when there is high financial
inequality in that county. There is no relationship between county-level racial bias in police
m e-th O d S ; shootings and crime rates (even race-specific crime rates), meaning that the racial bias
observed in police shootings in this data set is not explainable as a response to local-level
crime rates.

Uses county level data and Bayesian statistical modeling



A FEVV TERMS

» Violent crime includes Murder, Rape, Robbery, and
Aggravated assault

* Property crime includes Burglary, larceny-theft, motor-vehicle

theft, and arson

mostly categorize race in to White, Black and Other

pecause the UCR statistics do not do a very good job

tracking those of hispanic origin and other groups are largely
negligible In the shooting and crime categories



NATIONAL OVERVIEW

US Aggregate Statistics e Armed or Unarmed (2013-2016)
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FRAMING THE QUESTIONS

VWhat population should we compare police shootings to?

What Is the best resolution level, national, state, county, intra-
county!

How do we identify outlier police departments or counties?

VWhat data do we really need to answer these questions!?
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A E LEVEL ANALTSES
(FRACTIONS)

1.0
® White O

State Aggregate Statistics ® Black I

New Mexico | )
Arizona [ SN 0% [
Okiahoma [EESEIIIIII ¥ iy
Montana o @]
Nevada LI ¢ S
West Virginia K
Colorado [— 1
California | %
Louisiana |5 e e
Alabama - [ s 00 02 04 06 08 10
Floridla |5 e ee— gt
Misss ouri |2 e
Oregon | e
Utah | — 7
South Carolina | S
Washington |y s e
Mississip i |5 o e
Kansas L Z* .
Texas ML >
Nebraska NI 2%
Maryland ESINNNNN TR
Kentucky I 2%
Tennessee | -
North Carolina | o —
Georgie I
Arkansas | A Shooting percentage
indiana IS %
Ohic IS % o
Wisconsin - | O . 90
Minnesota | ) . : o Wi
Hiinois - | e I % 4 of S

Violent crime percentage

Racial breakdown

=)
Vignia IS %% ey g . e
o
lowa I % . T 60 e
. [9]
Pennsyivania | s B ” °
Michigan - | & o i Sghy .
40
New Jersey | I g S i coent R B
. = [
Connecticut EEEEEEEEEEELLLEEEE—— * EE Sl rw e rve
1=
Massachusetts BTG @ > TS 5 2 & o
S ] L [ ]
New ork | e 10
¥ .,
0o @ e®
0 5 10 15 20 25

] Shooting Rate [per million]
B white [ black B other



EOUNTY LEVEL ANALCTESE

Shooting Rate GINI Index
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EOUNTY LEVEL ANALCTESE
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EOUNTY LEVEL ANALCESES

County Aggregate Statistics
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COUNTY LEVEL ANALYSIS
(RACIAL BIAS)
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 \While not direct

makeup Is highly skewed in one direction or the other



A BlT OF MACHINE LEARNING

* In a perfect world we would have data on all police
encounters so we would be able to do a classification

problem with boolean labels shot vs not shot

* We only have fairly reliable county data on shootings but we
have seen that there are various indicators that go along with
police shootings

» Jo test this we use various features and try to predict the
race of the victim.



BIL DETAILS & RESULES

e llfcsi Y [olent crime rate,
broperty crime rate, drug
crime rate, black percentage,
white percentage, GINI,
median household income

* ML classifiers: Logistic

Regression, Gradient Boosting,
Random Forest, SVC, KNN

» Cross validation with
Stratified k-folds (5 folds)
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L DE TAILS & RESUESS

Learning Curve RF
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LOCAL LA DATA
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http://data.lacity.gov
http://data.lacounty.gov

pvricRE | O GO FROM FiESS

» Use local data (only big cities have good open data) to construct
crime rates and population numbers.

» Use Watson to “read’ reports for all shooting incidents to gain
extra features. This could be done with more personalized data
ike Fryer study.

» Place more emphasis on finding outliers or bad police
departments

» Other thoughts!



